skip to main content


Search for: All records

Creators/Authors contains: "Shi, Cheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigated environmental, landscape, and microbial factors that could structure the spatiotemporal variability in the nontarget chemical composition of four riverine systems in the Oregon Coast Range, USA. We hypothesized that the nontarget chemical composition in river water would be structured by broad-scale landscape gradients in each watershed. Instead, only a weak relationship existed between the nontarget chemical composition and land cover gradients. Overall, the effects of microbial communities and environmental variables on chemical composition were nearly twice as large as those of the landscape, and much of the influence of environmental variables on the chemical composition was mediated through the microbial community (i.e., environment affects microbes, which affect chemicals). Therefore, we found little evidence to support our hypothesis that chemical spatiotemporal variability was related to broad-scale landscape gradients. Instead, we found qualitative and quantitative evidence to suggest that chemical spatiotemporal variability of these rivers is controlled by changes in microbial and seasonal hydrologic processes. While the contributions of discrete chemical sources are undeniable, water chemistry is undoubtedly impacted by broad-scale continuous sources. Our results suggest that diagnostic chemical signatures can be developed to monitor ecosystem processes, which are otherwise challenging or impossible to study with existing off-the-shelf sensors. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Introduction

    Dissolved organic matter (DOM) composition varies over space and time, with a multitude of factors driving the presence or absence of each compound found in the complex DOM mixture. Compounds ubiquitously present across a wide range of river systems (hereafter termed core compounds) may differ in chemical composition and reactivity from compounds present in only a few settings (hereafter termed satellite compounds). Here, we investigated the spatial patterns in DOM molecular formulae presence (occupancy) in surface water and sediments across 97 river corridors at a continental scale using the “Worldwide Hydrobiogeochemical Observation Network for Dynamic River Systems—WHONDRS” research consortium.

    Methods

    We used a novel data-driven approach to identify core and satellite compounds and compared their molecular properties identified with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS).

    Results

    We found that core compounds clustered around intermediate hydrogen/carbon and oxygen/carbon ratios across both sediment and surface water samples, whereas the satellite compounds varied widely in their elemental composition. Within surface water samples, core compounds were dominated by lignin-like formulae, whereas protein-like formulae dominated the core pool in sediment samples. In contrast, satellite molecular formulae were more evenly distributed between compound classes in both sediment and water molecules. Core compounds found in both sediment and water exhibited lower molecular mass, lower oxidation state, and a higher degree of aromaticity, and were inferred to be more persistent than global satellite compounds. Higher putative biochemical transformations were found in core than satellite compounds, suggesting that the core pool was more processed.

    Discussion

    The observed differences in chemical properties of core and satellite compounds point to potential differences in their sources and contribution to DOM processing in river corridors. Overall, our work points to the potential of data-driven approaches separating rare and common compounds to reduce some of the complexity inherent in studying riverine DOM.

     
    more » « less
  3. A frequent goal of chemical forensic analyses is to select a panel of diagnostic chemical featurescolloquially termed a chemical fingerprintthat can predict the presence of a source in a novel sample. However, most of the developed chemical fingerprinting workflows are qualitative in nature. Herein, we report on a quantitative machine learning workflow. Grab samples (n = 51) were collected from five chemical sources, including agricultural runoff, headwaters, livestock manure, (sub)urban runoff, and municipal wastewater. Support vector classification was used to select the top 10, 25, 50, and 100 chemical features that best discriminate each source from all others. The cross-validation balanced accuracy was 92− 100% for all sources (n = 1,000 iterations). When screening for diagnostic features from each source in samples collected from four local creeks, presence probabilities were low for all sources, except for wastewater at two downstream locations in a single creek. Upon closer investigation, a wastewater treatment facility was located ∼3 km upstream of the nearest sample location. In addition, using simulated in silico mixtures, the workflow can distinguish presence and absence of some sources at 10,000-fold dilutions. These results strongly suggest that this workflow can select diagnostic subsets of chemical features that can be used to quantitatively predict the presence/absence of various sources at trace levels in the environment. 
    more » « less